Association between Oxidative DNA Damage and Risk of Colorectal Cancer: Sensitive Determination of Urinary 8-Hydroxy-2′-deoxyguanosine by UPLC-MS/MS Analysis
نویسندگان
چکیده
Oxidative DNA damage plays crucial roles in the pathogenesis of numerous diseases including cancer. 8-hydroxy-2'-deoxyguanosine (8-OHdG) is the most representative product of oxidative modifications of DNA, and urinary 8-OHdG is potentially the best non-invasive biomarker of oxidative damage to DNA. Herein, we developed a sensitive, specific and accurate method for quantification of 8-OHdG in human urine. The urine samples were pretreated using off-line solid-phase extraction (SPE), followed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. By the use of acetic acid as an additive to the mobile phase, we improved the UPLC-MS/MS detection of 8-OHdG by 2.7-5.3 times. Using the developed strategy, we measured the contents of 8-OHdG in urine samples from 142 healthy volunteers and 84 patients with colorectal cancer (CRC). We observed increased levels of urinary 8-OHdG in patients with CRC and patients with tumor metastasis, compared to healthy controls and patients without tumor metastasis, respectively. Additionally, logistic regression analysis and receiver operator characteristic (ROC) curve analysis were performed. Our findings implicate that oxidative stress plays important roles in the development of CRC and the marked increase of urinary 8-OHdG may serve as a potential liquid biomarker for the risk estimation, early warning and detection of CRC.
منابع مشابه
Assessment of Oxidative Damage to Proteins and DNA in Urine of Newborn Infants by a Validated UPLC-MS/MS Approach
The assessment of oxidative stress is highly relevant in clinical Perinatology as it is associated to adverse outcomes in newborn infants. This study summarizes results from the validation of an Ultra Performance Liquid Chromatography-tandem Mass Spectrometry (UPLC-MS/MS) method for the simultaneous quantification of the urinary concentrations of a set of endogenous biomarkers, capable to provi...
متن کاملOGG1 DNA Repair Gene Polymorphism As a Biomarker of Oxidative and Genotoxic DNA Damage
Background: Single nucleotide polymorphisms in 8-oxoguanine DNA glycosylase-1 (OGG1) gene modulates DNA repair capacity and functions as one of the first lines of protective mechanisms against 8-hydroxy-2’-deoxyguanosine (8-OHdG) mutagenicity. OGG1-Cys326 gene polymorphism may decrease DNA repair function, causing oxidative stress due to higher oxidative DNA damage. The main purpose of this stu...
متن کاملMethod for the analysis of 8-hydroxy-2'-deoxyguanosine in urine by gas chromatography.
damage to DNA is considered to be important in mutagenesis, carcinogenesis and the ageing process. 1,2 Of about 20 major oxidative DNA adducts that have been characterized, 3 8-hydroxy-2′-deoxyguanosine (8OHdG) has received considerable attention due to its demonstrated mutagenic potential, 1,4,5 which has been shown to cause the GC→TA transversion. 6,7 It is worth mentioning that many GC→TA tr...
متن کاملUrinary 8-hydroxy-2'-deoxyguanosine as a biological marker of in vivo oxidative DNA damage.
DNA is subject to constant oxidative damage from endogenous oxidants. The oxidized DNA is continuously repaired and the oxidized bases are excreted in the urine. A simple routine analytical procedure is described for urinary 8-hydroxy-2'-deoxyguanosine, an oxidative DNA damage adduct, as an indicator of oxidative damage in humans and rodents. This adduct was purified from human urine and charac...
متن کاملElevated Levels of Urinary Markers of Oxidative DNA and RNA Damage in Type 2 Diabetes with Complications
The mechanisms underlying progression of type 2 diabetes are complex and varied. Recent studies indicated that oxidative stress provided a new sight. To further assess the relationship between nucleic acid oxidation and complications in patients with type 2 diabetes and explore its possible molecular mechanisms, we studied 1316 subjects, including 633 type 2 diabetes patients and 683 age- and s...
متن کامل